
J.COURTIN PC* LVH CAEN

Structures de données : Piles
et queues

Ce TD propose une approche simplifiée dans laquelle nous ne tenterons pas d’implémenter une
classe objet en python. Nous allons donc représenter nos structures de données [pile puis queue]
par un tuple non modifiable en python contenant les attributs. Les méthodes sur l’objet seront des
fonctions.
Dans les deux cas on peut remplir nos piles avec n’importe quels objets python. Je vous
recommande de choisir des entiers ça n’a aucune importance ici. En revanche l’objet None sera
réservé pour indiquer que la structure de données est vide.

Important : les fonctions en python ne permettent pas de mettre à jour automatiquement les
structures de données comme le fait naturellement une class objet. A chaque modification de
l’objet il faudra le mettre à jour « à la main ». Pour cela vous devez déclarez votre objet de façon
global dans le corps de fonction. Ex : global maPile. Les modifications sur l’objet seront alors
prises en compte hors de la fonction.

A - Structure de pile
On peut imaginer la pile comme une pile d’assiettes : on accède qu’à
l’assiette au sommet de la pile que ce soit pour poser ou prendre une
assiette.
Le premier posé est aussi le dernier retiré selon la logique FILO :
« First In Last Out ».

Cette structure de base est une des plus courantes en informatique
[mémoire, récursivité] et sert de base à de nombreux algorithmes.

1 - Créer un objet appelée maPile
dans le script global.
La structure de données en mémoire va prendre la forme suivante :
maPile = (0 , []) #objet Pile => (height, pile)

- Il n’y aura qu’une variable pile dans ce problème. Toutes les méthodes concernant les listes sont
évidemment interdites pour la suite. pile est initialisée comme liste vide [].

- La variable height, qui maintiendra à jour la hauteur de la pile, ou nombre d’éléments empilés est
initialisée à 0.

J.COURTIN PC* LVH CAEN

On dit que height et pile sont des attributs de la structure de données ils doivent être mis jour à
chaque modification de la pile.

2 - Vérification que la pile n’est pas vide.
Cette opération est indispensable pour ne pas rechercher des données qui n’existent pas.
Dans le cas contraire des erreurs de type indexError seraient déclenchées. 
Créer une fonction isEmpty() qui dit si la pile est vide. La fonction len() des listes est interdite.

Point technique :
Dans la suite on veut remplir notre structure de données puis éventuellement la vider. Cela
suppose de récupérer les données de l’objet et d’enregistrer ces modifications dans le script
global. Pour cela vous pourrez introduire en début de corps de fonction le code suivant :

def maFonction(variablesEventuelles):
 global maPile #permet de modifier l’objet maPile depuis le corps de fonction
 height, pile = maPile #récupération des attributs (car le tuple n’est pas modifiable)

***** votre code ****

 maPile=(height,pile) #mise à jour de votre structure de données.

3 - Méthode push(elem) : on pose une
assiette !
Ecrire une fonction push(elem) qui ajoute un élément sur la pile mais qui ne renvoie rien.
Il faut mettre à jour la structure de données.

4 - Méthode pop() : on enlève une assiette !
Ecrire une fonction pop() qui renvoie l’élément en haut de la pile et le retire de la pile.
Attention : si la pile est vide la méthode pop() ne doit rien renvoyer.
ll faut mettre à jour la structure de données.

5 - Méthode lookUp() : on regarde juste quel
est l’élément sur la pile.
Ecrire une fonction lookUp() qui renvoie l’élément en haut de la pile mais ne le retire de la pile.
Attention : si la pile est vide la méthode pop() ne doit rien renvoyer.
pas de mise à jour.

J.COURTIN PC* LVH CAEN

6 - Exercice : Trouver le k-ième élément sur la
pile
Ecrire une fonction kPop(k) qui sorte le k-ième élement sur la pile et préserve le reste de la pile.
Vous n’avez le droit pour cela qu’aux fonctions précédentes.

Rq : L’utilisation des méthodes permet de modifier l’objet sans passer par une déclaration en global.

B - Structure de queue
On peut imaginer la queue comme une file d’attente ou des perles enfilées sur une ficelle :
on entre dans la file par la gauche et on sort par la droite selon logique FIFO : « First In First Out ».
Cette structure de base est aussi l’une des plus courantes en informatique [buffer, router] et sert de
base à de nombreux algorithmes.

Nous reprenons donc la même démarche ici, toutefois la gestion en mémoire peut-être très
différente car la file se remplit d’un coté et se vide de l’autre : les deux frontières sont « mobiles ».
Cette particularité sera ici masquée par le fait que nous utilisons des listes dynamiques python.
[Cf - cours gestion des tableaux].

1 - Créer un objet appelée maFile dans le
script global.
La structure de données en mémoire va prendre la forme suivante :
maFile = (0 , []) #objet queue => (length, file)

- Il n’y aura qu’une variable file dans ce problème. Toutes les méthodes concernant les listes sont
évidemment interdites pour la suite. file est initialisée comme liste vide [].

- La variable length, qui maintiendra à jour la longueur de la file, ou nombre d’éléments dans la
queue est initialisée à 0.

J.COURTIN PC* LVH CAEN
On dit que length et file sont des attributs de la structure de données ils doivent être mis jour à
chaque modification de la pile.

2 - Vérification que la pile n’est pas vide.
Cette opération est indispensable pour ne pas rechercher des données qui n’existent pas.
Dans le cas contraire des erreurs de type indexError seraient déclenchées. 
Créer une fonction isEmpty() qui dit si la file est vide. La fonction len() des listes est interdite.

Point technique :
Dans la suite on veut remplir notre structure de données puis éventuellement la vider. Cela
suppose de récupérer les données de l’objet et d’enregistrer ces modifications dans le script
global. Pour cela vous pourrez introduire en début de corps de fonction le code suivant :

def maFonction(variablesEventuelles):
 global maFile #permet de modifier l’objet maFile depuis le corps de fonction
 length, file = maFile #récupération des attributs (car le tuple n’est pas modifiable)

***** votre code ****

 maFile=(length, file) #mise à jour de votre structure de données.

3 - Méthode push(elem) : on entre dans la
queue par la gauche !
Ecrire une fonction push(elem) qui rentre un élément dans la file par la gauche mais qui ne
renvoie rien. Il faut mettre à jour la structure de données.

4 - Méthode pull() : on sort de la queue par la
droite !
Ecrire une fonction pull() qui renvoie l’élément en bout de file à droite et le retire.
Attention : si la file est vide la méthode pull() ne doit rien renvoyer.
ll faut mettre à jour la structure de données.

J.COURTIN PC* LVH CAEN

5 - Exercice : rétrograder de k-place !
Ecrire une fonction retrograder(i,k) qui recule le i-ème élément de k places si l’opération est
possible et qui renvoie un message d’erreur sinon. Cette fonction ne renvoie rien.  
A nouveau, seules les fonctions de la parties B sont autorisées et pas les méthodes de liste :
file[i], file[k] = file[k], file[i].

Idée : Envisager la queue comme des perles enfilées sur une ficelle : on ne peut les sortir que par
la droite et ne les rentrer que par la gauche ce qui ne simplifie pas les choses.
Rq : L’utilisation des méthodes permet de modifier l’objet sans passer par une déclaration en global.

Fin

